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A model is proposed for the formation of the zone of heightwise variation of 

phase parameters and the zone of stabilization of the bubble phase in a fluidized 
bed. A qualitative study is made of the effect of the fluidization parameters 
on the position and dimensions of the zone. 

To design fluidized-bed reactors, designers usually use mean parameters of the bubble 
phase and the dense phase -- the dimensions of the bubbles, the volume of the bubble phase, 
the magnitude of the gas flow passing through the dense phase, etc. These parameters change 
considerably through the height of the bed [i, 2]. Experimental determination of the pa- 

rameters of the bubble phase involves measurement of the local densities of the bed, fre- 
quencies of density fluctuation, and rate of surfacing and dimensions of the bubbles. Such 
studies can be conducted on so-called "cold" models of fluidized-bed units. 

The fluidization conditions in a given fluidized-bed reactor may differ from the con- 
ditions present in the "cold" model. Thus, we can expect a change in the parameters of the 
bubble phase and the associated values of the phase exchange coefficients. 

The goal of this article is to qualitatively evaluate the effect of the temperature, 
pressure, viscosity, and density of the fluidizing flow and the dimensions and density of the 
solid particles on the parameters of the bubble phase. 

Three characteristic zones can be distinguished in units with free fluidized beds having 
distributors in the form of porous or perforated plates [i, 2]: i) a zone of variable pa- 
rameters adjacent to the gas-distributing zone in which there is substantial bubble growth 
and a reduction in the gas flow in the dense phase over the height of the bed; this zone con- 
tains a substantial quantity of fine bubbles; 2) a stabilization zone in which the param- 
eters of the phases (bubble dimensions, mean gas velocity in the dense phase, etc.) are 
nearly constant; 3) a zone of intensive bubble disintegration adjacent to the upper boundary 
of the bed, the height of this zone being small compared to the heights of the first two 
zones. 

We should note the substantial difference in the rates of interphase (bubbles~ense 
phase) mass transfer in the different zones. The zone of variable parameters contains fine 
bubbles, which have a high rate of mass exchange with the dense phase. The zone character- 
ized by stable parameters contains coarse bubbles; the gas velocity in the dense phase is 
close to the minimum fluidization velocity, and nearly all of the reactants entering into 
reaction on the surfaces of the particles in the dense phase are delivered by bubbles 
as a result of volumetric flow. 

The location and dimensions of the variable-parameters zone and stabilization zone and 
the values of the parameters of the phases in these zones have a significant effect on the 
occurrence of chemical processes in the fluidized-bed reactor. In particular, when catalytic 
processes are taking place, an increase in the dimensions of the variable-parameters region 
leads to an increase in conversion and selectivity [3]. 

Of practical interest are the dependence of the dimensions of the basic zones of the 
bed, their location, and values of parameters of the phases in the zones on the pressure, 
temperature, viscosity, and velocity of the gas and the dimensions and density of the solid 
particles, etc. 
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A qualitative explanation of the reasons for the formation of the stabilization zone 

follows. The velocity of the gas in the dense phase exceeds the fluidization velocity in 
direct proximity to the gas distributor. According to the results of the studies [4-7], in 
this case the bubbles grow as they rise in the bed. The bubble growth is due to the in- 
filtration of gas from the dense phase into the bubbles and their coalescence and it leads 
to a reduction in gas velocity in the dense phase with increasing height. At a certain dis- 
tance x, from the gas distributor the gas velocity in the dense phase becomes equal to the 
minimum fluidization velocity. According to empirical results [i, 4, 5], this violates the 
conditions for bubble growth and at heights exceeding x, the parameters of the phases remain 
constant up to the small bubble-disintegration zone adjacent to the upper boundary of the 
bed. The height x, corresponds to the lower boundary of the stabilization zone. 

The distribution of phase parameters over the height of a fluidized bed due to bubble 
growth was examined earlier in [8]. It should be noted, however, that in this work the 
authors assumed the concentration of bubbles to be constant over the bed height in the ab- 
sence of coalescence. Since the bubbles accelerate with height as a result of the growth, 
their concentration should change over the height. The basic equation describing the de- 
pendence of bubble size on the distance to the gas distributor was derived using the 
assumption of the constancy of the gas velocity in the dense phase over the bed height. The 
dependence of bubble size on distance to the gas distributor obtained from dimensional theory 
leads to vanishing of bubble size when the gas velocity in the dense phase equals the minimum 
fluidization velocity. This contradicts the empirical findings -- in the stabilization re- 
gion, where gas velocity is roughly equal to the minimum fluidization velocity, bubble size 
is maximal. These considerations limit the range of application of the results from [8]. 
The model proposed below is free of such problems. In particular, the dependence of the 

bubble concentration and gas velocity in the dense phase on the distance to the inlet to the 
fluidized bed is determined from equations of the proposed model. 

Let us construct the simplest possible qualitative theory describing the phenomenon in 
question. We will assume that the concentration of surfacing bubbles is not great, so that 
coalescence processes are absent and the rate of surfacing coincides with the rate of rise 
of an isolated bubble. In this case, the rate of bubble growth is determined only by the 
infiltration of gas from the dense phase. We will assume that the dimensions of the rising 
bubbles are the same. 

The quantities characterizing the state of both phases will be averaged over a period 
of time longer than the characteristic time of ascent of a bubble in the bed. Here, the 

mean parameters of the phases will be assumed to be the steady-state values. The state of 
both phases at a distance x from the gas distributor will be characterized by the mean values 
of the parameters V, u, n, e, and v over the cross section. 

Given these assumptions, the rate of increase in bubble volume and the rate of rise of 
a bubble in a bed of fine particles are determinedby the following expressions in accordance 
with [6, 7]: 

dV _ k e v V 2 / 3 ,  ~ _  28~ ( 3 /2/3 
dt 9 \ - - - ~  ] ~ 3.76; 

(i) 
u = - -  yVl/6,  ? = 1.01 gl/2 ,~ 2,49 mt/~sec. 

dt 

The first expression is written on the assumption that the bubble size is always greater 
than the so-called "equilibrium" size [6, 7]. The value of the coefficient y in the second 
expression was obtained in accordance with the test data in [9]. 

Given the above assumptions, we write the simplest one-dimensional model describing 
the change in the parameters of the phases in a fluidized bed over its height: 

dV ~,?_,evV~/2, d (nVu) ~evnV~/a ' 
dx dx 

U ~--- 7 V  1/6, (1 - - n V ) e v  + nVu = U, (2) 
[ 18vdl ] 4/ls 

e = r o = gd2p(d~__dl) . 
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The first equation describes the growth of bubbles as they rise in the bed; the second equa- 

tion is the balance equation for the volume of the bubble phase, with allowance for bubble 
growth and the change in rate of rise; the fourth equation is the conditionfor conservation 

of the total gas flow in the bed; in this equation, it is considered that in beds of fine 

particles the rate of bubble rise generally exceeds the fluidization velocity. Thus, each 
bubble is surrounded by a closed region of gas circulation in which the total gas flow in 

the coordinate system associated with the bubble is equal to zero (in the beds of fine 
particles being examined, the bubble volume is practically the same as the volume of the 
region of closed circulation); the fifth relation, in the case of fine particles, determines 
the connection between the porosity and gas velocity in the dense phase [i0]. We assume that 

the bubble concentration and volume at the lower boundary of the bed are known, i.e., 

x = O ,  n = n o ,  V = V o .  (3) 

Solution of problem (2)-(3) shows that the bubble volume and concentration are con- 

nected by the relation 

nV 1/6 -- noVo 1/6 = C ---- const .  

We have the following for the dependence of the bubble volume on the distance to the gas 
distributor, this dependence being obtained from the solution of problem (2)-(3): 

1 {In (1 §  ) q _ T [ E ( o ) _ E ( O o ) ] }  ; 
X - -  ~'Cq )1/2 ( 1 - - 9 1 / 2 ) (  1 "~-9~ 12) 

31/2 + 
E (9 ) = 391/3 - - 3 1 / 2  a rc tg  , + ln (1  - - 9 )  ln(p2/3 + p l / a +  1), 

2 p~/3 + 1 2 

V U U5/6C1/0 Vo 
p :  , q D -  , T , P o :  

q~ y C  75/6 

(4) 

Bubble volume is connected to gas velocity in the dense phase by the following equation 
from the fourth equation of (2): 

9 + (1 - -  TpS/~)~ = 1; ~ = ~viP/15U - '  = ~vU -1. (5 )  

The lower boundary of the stabilization region x, is determined from Eqs. (4) and (5) at 

v = Umf. At ~ << 1 and Po << i, which is typical of large fluidized beds of fine particles 
for which v << U, we have 

. 19/1 l-----i----- { 1 , 3 9 + 5 , 5 5 T - - ( 1 - - T ) l n [ ( 1 - - T ) ~ , ] } .  ( 6 )  O, ~ 1 - -  (1 - -  T) ~,,  ~, = ~ - ~ f  5U-~ = ~ j u m j U  -~, x ,  ,~. ~C~ 1/2 

Equations (4)-(5) are valid at x ~ x,. At x > x,, we should set p = 0, and ~ = ~,, 
i.e., V, n, v, and e = const. 

Let us present an example. We will examine the fluidization by air (dl = 1 kg'm -3, 
m 2 -i . = 1.8"i0 -s "sec ) of highly porous particles of silica gel of diameter dp = 5"10 -~- 

2.5"10 -3 m. The initial fluidization velocity Umf = 7"10 -3 m'sec -I. The gas velocity, 

calculated for the empty cross section of the unit, is taken equal to U = 0.03 m'sec -I. 
For no and Vo we take the values no = 5"102 m -3, Vo = 4"10 -~ m 3. We find the values of the 

parameters in Eqs. (4) and (5) in the form C = 63.0, ~ = 191.10 -a, T = 5.02.10 -2, ~ = 1.54, 90 = 
2.09"10 -2 . For ~ = ~,, corresponding to the lower boundary of the stabilization region, x, = 
1.07 m. The use of approximate formulas (6) gives p, = 0.909, x, = 1.2 m. The estimates ob- 
tained are comparable to the test data presented in [i, 2]. 

Figures 1-3 show the dependences of the parameters of the fluidized bed on the dis- 
tance to the gas-distributing grate. It should be noted that at x = x,, the derivatives 

of the phase parameters along the vertical coordinate are very small. This is consistent 
with the assumption of the constancy of the parameters at x ~ x,. 

In constructing the curves in Fig. 3, the value of the dimensionless initial volume of 
the bubbles was assumed to be so small that p~/3 << i, and in Eq. (4) we could set E(po) = 
--31/2w. It should be noted that the last assumption is consistent with many experimental 
findings; in particular, bubbles close to the gas distributor are so small that they cannot 
be identified by conventional experimental methods. 
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Fig. i. Dependence of the dimensionless volume of the bubbles 
P and the gas velocity in the dense phase v on the distance to 
the gas-distributing grate x with air fluidization of high- 
porosity particles of silica gel: Umf = 7'10 -3 m'sec-1; U = 
0.03 m'sec-1; no = 5"102 m-3; initial volume of bubbles Vo = 
4"10 -6 m 3. v, m'sec-~; x, m. 

Fig. 2. Dependence of bubble concentration on distance to bed 
inlet. The values of the parameters correspond to the data in 
Fig. i. 
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Fig. 3. Dependence of the dimensionless 
volume of the bubbles p and the dimensionless 
gas flow in the dense phase ~ = evU -t on the 
dimensionless distance to the bed inlet x' = 
kC~/~x with different values of the parameter 
T: i) T = 0.05; 2) 0.I; 3) 0.5; 4) 0.9. 

The values of no and Vo for some types of gas-distributing devices can be calculated 
using the correlation in [ii] for the frequency of bubble formation and the initial volume of 
the bubbles when discharged from a single opening. In the general case, the value of the 
constant C can be established by measurements of n and V a sufficient distance from the bed 
inlet, i.e., in the stabilized region of the bed. This is quite a bit simpler than directly 
measuring no and Vo near the gas-distributing grate. This approach is sufficient to estab- 
lish the distribution of the phase parameters over the height and the lower boundary of the 
stabilization region at p~/3 << i. At greater values of Po, data are also needed on the 
values of one of the parameters no or Vo. 

Now let us analyze the effect of the density and viscosity of the fluidizing gas, the 
pressure and temperature in the bed, and the density and dimensions of the solid particles 
on the location and dimensions of the zones and the parameters of the phases in the stabili- 
zation zone. 
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According to the results in [i0], the parameter ~, in Eqs. (6) is determined by the 
expression 

1 9 / 4  . 2  . - -  [ ,= ~i gap(a~--dl) 
18 d~U 

It follows from Eqs. (6) that an increase in the density, viscosity, and velocity of the gas 
leads to an increase in the distance from the lower boundary of the stabilization zone to 
the gas distributor, i.e., to an increase in the size of the variable-parameters zone. It 
follows from this that an increase in the temperature and pressure in the bed will also 
lead to an increase in the size of the variable-parameters zone and, thus, to an intensifica- 
tion of phase exchange processes in the lowest zone of the bed. The size of the variable- 
parameters zone decreases with an increase in the size and density of the solid particles. 

It should be noted, however, that in actual developed fluidized beds the dimensions of 
the bubbles stabilize at greater heights than the height at which the gas flow stabilizes 
in the dense phase [2]. This fact evidently has to do with the coalescence of bubbles in 
the region where the gas flow has already stabilized, with the presence of very fine bubbles 
in the dense phase, and with other factors. 

It also follows from Eqs. (6) that bubble size in the stabilization zone decreases with 
an increase in the density, viscosity, temperature, and pressure of the gas and a reduction 
in the dimensions and density of the solid particles. The dependences of the bubble velocity 
and the percentage of the gas flow passing through the bed with the bubbles on these quanti- 
ties are similar. The number of bubbles in the bed increases somewhat here. The results 
obtained are supported by measurements [12-14] of bubble size in the stabilized zone as a 
function of temperature, pressure, and the dimensions of the solid particles. 

In conclusion, we should note that the change in the phase mass transfer coefficients 
over the height of the bed can be analyzed in accordance with the test results in [15], 
which gives data on the qualitative character of the dependence of the phase mass transfer 
coefficient on bubble size. 

Allowing for these qualitative laws makes it possible to reduce the volume of studies 
necessary on pilot and experimental units. In particular, study of the parameters of the 
bubble phase on a "cold" reactor model can provide reliable low estimates of conversions and 
selectivities for an actual reactor [16]. 

NOTATION 

C = nVl/6; dl, density of the gas; d2, density of the material of the solid particles; 
dp, particle diameter; n, number of bubbles per unit volume; T = US/~CI/~y-5/6; t, time; U, 
gas velocity calculated for the empty cross section of the unit; u, rate of bubble rise; 
Umf , minimum fluidization velocity; V, bubble volume; v, gas velocity in the dense phase; x, 
distance to gas distributor; y = 1.01gI/2(3/4~)i/~; r porosity of dense phase; emf, minimum 
f . . . .  -I iuldlzatlon poroslty; ~ = evU , dimenslonless gas flux in dense phase; ~, = amfUmfU-1; % = 
3.76; ~, kinematic viscosity of gas; p~F~-~ , dimensionless volume of bubbles; ~=U(7C)-I; o= 

{18~dz/[gd~(d~--dl)]}411~. 

io 

2. 

3. 

. 

5. 
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PACKET MODEL OF EXTERNAL HEAT TRANSFER FOR A FLUIDIZED BED 

V. A. Borodulya and V. I. Kovenskii UDC 66.096.5 

A modification is proposed for the packet model of external heat transfer of a 
fluidized bed. The modified model considers heat exchange between the particles 
and the gas flowing through the packet formed by the particles. 

As is known, a fluidized bed is characterized by a discrete structure [I]. The effect 
of this structure on external heat transfer is evidently best accounted for by the packed 
model described in detail in [1-3]. According to this model, rising gas bubbles mix with 
dispersed material and continuously move packets of particles from the core of the bed to 
the wall of the heat exchanger. Approaching the wall, the packets, in the process of non- 
steady heat conduction, give up the heat they accumulated in the core (henceforth, it is 
assumed that the temperature of the heat exchanger is lower than the temperature of the 
bed). The packet model most accurately describes heat exchange in a fluidized bed of fine 
(dp ~ 0.5 mm) particles [3]. 

Another well-known mechanism -- convective heat transfer by a filtering gas -- determines 
heat transfer in a bed of coarse (dp > 5 mm) particles [3]. 

In accordance with the assumption of the additivity of the components of external heat 
transfer [1-6], transport models corresponding to the limiting cases of fine and coarse 
particles are used jointly to describe the process in a fairly broad and practicable range 
of intermediate dispersed-material sizes (0.5 < dp < 5 mm). Here, an increase in particle 
size changes the relative contribution of the main heat-transfer mechanisms. 
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